Unexpected origin of magnetism in monoclinic Nb12O29 from first-principles calculations
نویسندگان
چکیده
Nb12O29 is a 4d transition metal oxide that occurs in two forms with different symmetries, monoclinic (m) and orthorhombic (o). The monoclinic form has unusual magnetic properties; below a temperature of 12 K, it exhibits both metallic conductivity and antiferromagnetic ordering. Here, first-principles densityfunctional theory calculations are used to study the structure, relative stability and electronic properties of Nb12O29. The optimized crystal structures are in good agreement with experimental observations and total energy calculations show similar stability of the two phases, while a magnetic electronic state is slightly favoured for m-Nb12O29. The unusual magnetism of the monoclinic phase originates from a Stoner instability that can be attributed to the Nb atoms with valence states close to Nb, i.e., the atoms with an electronic configuration of d. This is in clear contradiction to current models in which the magnetism is attributed to the presence of localized Nb ions with a formal d configuration. Our study demonstrates that in complex structures, magnetic properties are best not inferred from ionic models, but require a full quantum mechanical calculation over the whole unit cell.
منابع مشابه
A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces.
The discovery of conductivity and magnetism at the polar-nonpolar interfaces of insulating nonmagnetic oxides such as LaAlO3 and SrTiO3 has raised prospects for attaining interfacial functionalities absent in the component materials. Yet, the microscopic origin of such emergent phenomena remains unclear, posing obstacles to design of improved functionalities. Here we present first principles ca...
متن کاملElectronic Structure of Half-metallic Magnets
We have analyzed the electronic structure of half-metallic magnets based on first principles electronic structure calculations of a series of semi-Heusler alloys. The characteristic feature of the electronic structure of semi-Heusler systems is a d-d gap in the density of states lying at/close to the Fermi level depending on the number of valence electrons. We have employed various indicators o...
متن کاملMagnetization due to localized states on graphene grain boundary
Magnetism in graphene has been found to originate from various defects, e.g., vacancy, edge formation, add-atoms etc. Here, we discuss about an alternate route of achieving magnetism in graphene via grain boundary. During chemical vapor deposition of graphene, several graphene nucleation centers grow independently and face themselves with unusual bonding environment, giving rise to the formatio...
متن کاملMagnetism in assembled and supported silicon endohedral cages: First-principles electronic structure calculations
First principles electronic structure calculations on a free CrSi12 cluster, a CrSi12 2 dimer, and CrSi12 clusters supported on Si 111 surfaces have been carried out within a gradient corrected density functional formalism using a supercell approach. The ground state of CrSi12 is a Cr centered hexagonal biprism of Si atoms in which the Cr spin moment is completely quenched. As two CrSi12 motifs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014